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Objective

⇒ Detecting land cover conversion changes using satellite image time series (SITS)

Challenges in detecting changes using a multi-temporal dataset:

high inter- and intra-annual (i.e., seasonal) variabilities,

irregular temporal sampling due to different acquisition dates and presence of clouds,

high dimensional data (complex datacube),

scarcity of reference data.

Dataset

Satellite images

Sentinel-2 (L2A) image time series for the consecutive years 2018 and 2019

collected from THEIA

10 spectral bands

correction of the atmospheric effects using the MAJA processing chain

cloudy pixels gap-filled using linear temporal interpolation on the union of both SITS acquisition

dates.

Figure 1. Sentinel-2 time-series acquisition dates with the interpolated union of both date acquisitions.

Reference data

French land cover reference dataset [1] for years 2018 and 2019

19 land cover classes, including four urban classes, seven annual crops, seven permanent

vegetation classes, and water within the region of interest.

Figure 2. Left: Study area showing the map of France and Sentinel-2 tile T31TCJ in red covering Toulouse and its

surroundings. Center: A grid split strategy is used to partition the data into train, validation and test sets with a ratio

of 60 : 10 : 30. Right: A close-up view of some blocks overlaying the reference dataset.

Proposed Approach

Strategy: leveraging self-supervised learning for change detection by taking advantage of the

acquisition of Sentinel-2 satellite images over two years

A. Pre-detection of non-change areas
Goal: ensuring that the contrastive loss in the self-supervised learning is computed only
between time series that have the same land cover.
1. Training a state-of-the-art SITS network (Lightweight Temporal Attention Encoder - LTAE) [2]
2. Applying post-classification to detect non-change areas. We use two strategies for the comparison:

hard-label comparison, i.e. predicted classes pairwise comparison

soft-label comparison: computing the Euclidean distance and automatic thresholding

Figure 3. Framework to pre-detect non-change areas. The classifier is trained for the year in which the reference

data are available; this is used to generate pseudo-labels for both years. If the classes for the labeled year and the

unlabeled year are identical, then the pair of time series is used in self-supervised learning.

B. Self-supervised learning

We use Bootstrap Your Own Latent (BYOL) [3], a self-supervised learning strategy that allows

learning robust data representations.

Figure 4. Framework of BYOL in the context of this study; where time series are extracted for two consecutive

years y and y + 1 represents.

C. Change detection

To obtain the change map, a classifier network is trained using the available land cover labeled

data for the oldest year, similar to the pre-detection step.

We test two strategies to use the pre-train network, the encoder’s parameters are either :
frozen or

finetuned.

Results

Table 1. Pre-detection of non-change areas. TNR: true negative rate; NC: number of pixels detected as non-changes.

Label (%) TNR (↑) NC

H
a
rd

5 79.94 491,548

20 96.79 420,788

100 97.98 397,760

S
o
ft

5 84.81 498,737

20 99.04 548,294

100 99.34 548,285

Table 2. Change detection results. FPR: false positive

rate; FNR: false negative rate; ERR: total error. (best)

Label (%) FPR (↓) FNR (↓) ERR (↓) F1 (↑)
Post classification w/o SSL (soft-label)

5 9.63 7.22 16.85 0.827

20 1.55 4.13 5.68 0.939

100 1.27 3.86 5.12 0.945

Hard-label

Finetuned 5 8.70 10.83 19.53 0.790

20 11.24 1.97 13.21 0.874

100 12.27 1.09 13.36 0.874

Frozen 5 14.50 9.57 24.07 0.760

20 12.77 1.06 13.83 0.871

100 14.86 0.90 15.76 0.856

Soft-label

Finetuned 5 8.61 6.20 14.81 0.848

20 4.40 1.99 6.39 0.934

100 1.17 3.76 4.93 0.947

Frozen 5 9.28 6.87 16.15 0.835

20 1.24 3.83 5.07 0.945

100 1.48 4.07 5.55 0.940

All pixels

Finetuned 5 4.54 7.13 11.67 0.873

20 1.46 4.05 5.51 0.94

100 1.64 4.23 5.87 0.936

Frozen 5 7.87 5.46 13.33 0.863

20 4.29 1.88 6.18 0.936

100 1.29 3.87 5.17 0.944

Figure 5. An example of change detection map in a test

set grid, comparing the influence of Frozen and

Finetuned strategies on the quality of change map.

Showing that finetuning model parameters outperform a

frozen strategy.

Conclusion

Exploring the use of self-supervised learning for change detection from SITS.

Using time series acquired at different periods as natural augmented views allows applying

self-supervised learning strategies.

Self-supervised learning shows promising results in addressing the annotation label scarcity.
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